D J0Sends Srraciures, INTIONoF Topp 383 10 39T Pergamon Press Printed in Great Browain

FINITE DEFORMATIONS OF INEXTENSIBLE
COSSERAT SURFACES

MaRCEL J. CROCHET?

Bell Telephone Laboratories. Incorporated.
Whippany. New lersey

Abstract - The set of ficld and constututive relations. together with the boundary conditions. are derived for
fimte deformutions of mextensible Cosserat surfaces. The theory is applied to the flexure of 4 rectangular plate
into 4 closed circular cylinder of finte length, and the deformation of 4 long rectangular plate into a helical
strip (burber’s pole).

1. INTRODUCTION

THE theory of plates and shells, the middle surface of which can be considered as inextensi-
ble. has been the object of several investigations over the last two decades ; principal among
these are the works by Ashwell [1-3]. Mansfield [4]. Reissner [5-6] and Johnson and
Reissner [7]. The physical significance of the inextensible hypothesis is based on the observa-
tion that when the ratio between deflection and thickness of a cantilevered extensible plate
increases, its behavior is almost inextensional. and the discrepancies between extensional
and mextensional solutions occur in a narrow region concentrated on the edges.

The mechanism by which a boundary laver is created along the edges of an extensible
plate in the state of large deformations has been analyzed in detail by Fung and Wittrick [8].
Essentially, if a rectangular strip of width b and thickness /1 is deformed into a cylindrical
strip with longitudinal radius of curvature R, the strip which at first assumes an anticlastic
shape, approaches a cylindrical form when the parameter b*/Rh becomes larger. Distur-
bances from the cylindrical configuration occur in a narrow boundary layer with a width of
the order |/(Rh).

When the edge of the plate is also subject to shear force and twisting moment, another
type of boundary layer occurs which was originally described by Kelvin and Tait [9]. in
explaining the physical meaning of Kirchhoff's boundary conditions along a free edge: the
width of the corresponding boundary layer is of the order h.

Ifitis assumed at the outset that the middle surface of the plate is inextensible and that a
deformed normal ¢lement remains normal to the middle surface, the concept of boundary
laver disappears. Instead. it is necessary to introduce three Lagrange multipliers along the
edges which allow to satisfy the boundary conditions. This has been done by Reissner [5]
for the case of shallow elastic shells, and similar boundary conditions have been found by
Ashwell [3] by considering the limit of the extensional problem when the width of the bound-
ary layer vanishes.

One of the Lagrange multipliers introduced in [5] originates from the fact that the edge
of an inextensible surface is also inextensible. and an indeterminacy of the boundary
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conditions has to be expected therefrom. Also. the absence of normal shear in (57 and {3
causes the presence of the remaining two indeterminate functions on the edges.

In this paper, we wish to examine the mechanism of large deformations for inextensible
Cosserat surfaces, and we follow the general theory of Green et al. [10]. for elastic surfaces
to every point of which a deformable director is attached. Finite deformation solutions
dealing essentially with axially and spherically symmetric homogeneous deformations
have been obtained recently by Crochet and Naghdi {117

By inextensible surface we mean that the length of a line element in the surface remains
invariant throughout the deformation. However, no constraint is imposed on the director.
This allows us to satisfy boundary conditions by introducing only one Lagrange multiplier
along the edges, since the director field on the surface can be selected such as to satisfy the
moment boundary conditions. This is done in Section 2. where we give also an explicit
form of the constitui:ve relations.

By applying the theory to some specific examples, we find that the effects discussed by
Kelvin and Tait {91 and Fung and Wittrick {8] occur in boundary layers along the free
edges : normal strain. which 1s included in the vertical component of the director. 15 also
confined to a region of small width along the boundary.

In Section 3 we censider the problem of a rectangular plate which s rolled into a closed
circular cylindrical tube of finite length. In Section 4. we analyze the deformation of a long
rectangular strip into a helical strip of constant radius (barber’s pole}—an exact solution
is obtained which satisfies the boundary conditions along the free edges.

2. AN INEXTENSIBLE ELASTIC COSSERAT SURFACE

Consider a Cosserat surface o. embedded in a three-dimensional Euclidean space.
defined by

r =Xy d = dix* . 120

where r is the position vector relative to u fixed origin. d 1s the director associated with
every point of ¢, x™x = 1.2} are convected coordinates locating material points on the
surface and 1 1s the time. In the reference configuration fsay, at time 1 = ). the position
vector is given by R{x*), while the director D has unit length and lies aiong the normal to
the undeformed surface . Also. let v = r and w = d be the point and director velocities.
respectively.

The base vectors along the x*-curves on ¢ are denoted bv a_. and a, stands {or the unit
normal to the surface: their duals on X are denoted by A, and A,. Also. a,, and b, 14,
and B,y dencte the covariant expression of the first and second fundamental forms.
respectively.

Let ¢ be a closed curve tving in o, and let v = v a* be the outward unit normai v
The curve and director force vectors per umit length of ¢ are denoted by N and M. respec-
tively, while F and L are the surface and director forces per unit area of #. In component
form. we have
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[t was shown 1n [10] that the field equations have the following form on o.
N —bN* 4+ pF" = pct.
N3 4+ b N¥ 4+ pF? = pc,

_ 2.3)
M| —bEM* 4+ pLf = w,
M*3, +b M*+pL* = m,
together with
el NY +mPd* + M%7 = 0
(2.4)

N= +(mPd*—med*)+ M3 — M3, = 0.

In (2.3), L is the difference between the director force L and the inertia effects due to the
motion of the director, ¢ is the acceleration vector and m is a vector to be specified by a
constitutive relation : in (2.4}, the tensor ~;, has components given by

’:lfz = dﬂlz_bzﬂda- laa = d3.a+baﬂdﬂ' (2.5)
The conservation of mass on the surface is expressed by
pat = pyAL, (2.6)

where p, (po). is the mass density per unit area of o, (X) and a, (A), 1s the determinant of the
matrix a,z. (A,,). Finally, the equation of balance of energy reduces to

pr—qi,—pTS$ =0, 2.7)

where q is the heat flux vector, r is the heat supply function per unit time and per unit mass
of 6, T is the temperature, and S is the specific entropy per unit mass of the surface.

Constitutive relations for the case of an elastic Cosserat surface have been obtained in
[10], with the assumption that the function of free energy 4 per unit mass of ¢ has the
following form,

A= AT, e, 7. di, Ay D)), (2.8)
where A,, is the value of 4,, in the reference configuration, and
2ey = a,— Ay (2.9)

Similar constitutive relations were postulated for N'*¥, M‘* and nr’, where

N = NP2 = NP —medf — M77F . (2.10)
With the use of Clausius~Duhem inequality. it was found in [10] that
CA
S= ——. —-q°T, =0,
eT Tla =
(2.11)
. A : ¢A
i= ol MY = p,
"=l N
and
NI (2.12)

Ce,y
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We shall now consider an inextensible elastic Cosserat surfuce, which 1s constramed ~e
that the length of any ¢lement in the surface remains unaltered throughout the moton®
It follows immediately that for such surfaces.

yy = ;‘,'_/. ("'x;i = ), o
and from (2.60and (2.13) we have.
N = ) "v}’“

The specitic {ree energy per unit area of the surface is given by

A= AT di A ERY

[0

Through a procedure similar to that used in {10}, it 15 easy to show that the consttutne
relations (2.11) remain unchanged for the case of an inextensible surface. However. V7
formerly given by (2.12) remains undetermined. and from {2.10} we obtain

N = T ot d? 4+ M0 RNy

where 7% in an arbitrary svmmetric tensor which should be determined through the
equations of motion.

In order to obtain the form of the boundary conditions, fet us consider an inextensible
Cosserat surfuce o which is acted upon by a surface force field Fix), and a director foree field
Lix): the boundary curve ¢* of ¢ supports a piecewise continuous curve force vector N¥(¢1
and a continuous director force M*{(¢). both per unit length of ¢* and the heat flux ulong
the boundary has the value h%¢). The equation of bulunce of energy postulated 11 16,
must be satisfied for the surface o surrounded by ¢*, und we have

d o, - C . . =
& t [Lpv. v~ pid+ TS do~ | “pr+pF. v=pL. wlde
= ’ INF VM ow =¥ des NP v 207

(=

where n point loads act at distinct corner points X% along the boundary ¢*. We shail ulso
consider that all necessary conditions of continuity and differentiability are satisfied
throughout 4.
With the use of the ficld cquations (231, 12.41 (2.7}, and the constitutive relations 2.8 1
{215 and (2,161 1t 1s possible to transform the left-hand side of (2.1 7y as follows
d ;o . v _
t apy ¥ =l - TS)V; da } '_;H‘»-‘;)F ve—pl.w a7

iy, o

P =Frv < TN = vpmdd = MY = oW de

=1 T vds - ' ANT =TT v =N W e gt T de ol

LI

W make o dintncten betvesn the notaens of mexiensible Cosserat surtaee  and Tmevtensiongd den

Somota Cosseratsurtace” Pho futter reters o spediad bpe cd delormaiion o soneri surtace wihde ih o
rdreates g special properte o e suriaee st

2o dermving (200N we have nor writien esplicrieiy e el
ment i D far cbhtamins the feld telens rom e sguation s

Fle aermvagion v

s tolowing i anerse order the aeg

e oneras
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where we have imtroduced the notation,

N* = N¥a,. T = T"’a/,,. M’ = AfMa,. {2.19)
Thus. by (2.17) and (2.18). we obtain the identity.
T,.vdo+ | N =T, =N*T.v+ W —M*)  w— (g, —h¥*)l dc
— ¥ opi b (2.20)

i=1

Consider at time r a given deformation of the Cosserat surface, and let the state of stress
be specified by the vectors T*, N* M* on ¢. and N*. M* on the boundary ¢*. Let v. w be the
associated point and director velocity fields at time t. From the form of the constitutive
relations (2.11) and (2.16), we observe that another velocity field, ¥. W say, may be associated
to the stress field specified above. with the same state of deformation. We may conclude
that (2.20) must be satisfied for all point and director velocity fields which are compatible
with the constraints.

Let x* = x*c) be the parametric equations of the boundary ¢*: the length of a line
element along c* remains constant in time. and we have,

Cx*oxt
Uwi_ _—d('-
e

) " W
d,p dx* dx
ce

awr’(c)l”((‘) dec® = const., (2.21)

where t* are the components of the tangent vector t* to ¢*. From (2.21) we conclude that
along c*,

[Iz,,(’((')[“(c') = Q. (2.2

Also. (2.13), must be satisfied throughout ¢.

Let $*#(x) be an arbitrary symmetric tensor field which is continuous and differentiable
over ¢, and let A(c) be an arbitrary scalar which is piecewise continuous and differentiable
over the boundary c*, with possible discontinuities at pointsx*, i = 1..... n. By considering
S$**(x) and A(c) as Lagrange multipliers. and taking into account the constraints (2.13),
and (2.22). we shall add to the identity {2.20) the following expression,

{f SPa,do + f Aled it dc}

“ St v,ydo+ [ Aleit(c). (-:‘ de
. ‘e

Lo} —

il

— | =s#, vdo+ | ISP, — STAEHAD vde+ T [ACGKALT v (2.23)
¢ 3 FT A P

where

S' = St (2.24)
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By adding (2.23} to {2.20) we obtain

o

J { ((N* +8 T, —N*— ;(:‘\(t‘)tic})} VOV = MR w (g, — /r‘w’( de

< | =8 vdo+ SOOI =P v = 0 (2.25)

i=1

Equation (2.25) must be identically satsfied for arbitrary (continuous) point and
director velocity fields v(x) and wix) respectively, over o and ¢*. From the surface integral
in (2.25) 1t follows that T* and S* differ only through a vector U” such that

UH, =0 12.26)

However, U* may be set to vanish identically without loss of generality. since it is contamned
in the general solution of the homogeneous part of {2.3), . In view of the continuity require-
ments on the variables appearing in the hine integral on the ieft-hand side of (2.25). we
conclude that on smooth elements of the boundary ¢* we havet

Ny, = N* 4 (Ao,
h (227
VP, = M*
and at the corners we find
CAlemicil = P (2.2%)
Then it follows easily from (2.25), (2.27y and (2.28) that
g, = h* (229

We now return to the constitutive relation {2.13) for the specific free energy of the
surface, and consider a Cosserat plute which is 1sotropic in the reference configuration.
For a plate, A, vanishes identicallv, and - may be expressed in terms of fifteen invariants
(obtained from those given in [10] by setting ¢,; = 0). However, in the rest of this paper. we
shall assume that for isothermal processes at temperature 7, the free energy 4 cun be
written as a quadratic function of the vartables (J, — 1) d, and +,,.7 If the Cosserat plate
imitates the symmetry of a three-dimensional plate which is transversely isotropic with
respect to normals to the plate. the free energy has the form

P = §13¢«’zzf, Hlrgd, =1y = luga, s

= HreadPa = gat a2 1230

and constitutive relations 12,11}, , assume the simple form

my, = 2, ary o= xgldy =1
Moy = A iy L rogy = Al 1230

M, = %,

* Let us recali that the boundary conditions for an extensible Cosserat surfce are given 5y N7 - N
M= VM on o*

- Nolinear terms will be mncluded since we conwider 3 prate ahich s tree of stress in the feference configuruinen



Finite deformations of inexiensible Cosserat surfaces 389

In a previous paper on special solutions for Cosserat surfaces, Crochet and Naghdi [11]
have used a general form for the function of free energy. and have shown that some special
solutions can be obtained without specialized assumptions. However. in view of the purpose
of the present paper, we shall assume for simplicity that the constitutive relations are given
by (2.31). It may happen that the form (2.30) for the free energy 4 is exact for a particular
type of Cosserat plate. Alternatively. if 4 given by (2.15) has a polynomial expansion. the
form (2.30) may be regarded as an approximation for motions in which the magnitudes of
the vector (d — 1) and tensor |/;,} (in a suitable non-dimensional form) are small compared
to 1.

3. BENDING OF A RECTANGULAR PLATE INTO A CLOSED
CIRCULAR CYLINDER

Let (v, y.2) stand for the coordinates of a point in a rectangular Cartesian system, and
consider an inextensible rectangular Cosserat plate which. in its reference configuration,
lies in the plane - = C:its area X is defined by

T:0<x< L, -a<y<a, = 0. (3.1)

Let (r, 6. () denote the coordinates of a point in a cylindrical polar coordinates system
[the origin of which does not necessarily coincide with that of the (x, y, ) system], and let
e.. €y, € be unit vectors tangent to coordinate lines at a generic point in space. The surface
o is deformed into a closed circular cylinder of radius R = L/2x, and axial length 2a, such
that the position of a point {x, y) of X is given in the deformed configuration by,

L 2n

0 =—x, i=w (3.2)

F=—
2n’ L

The description of the deformed Cosserat surface 1s achieved by requiring, from axial
symmetry considerations. that the deformed director at a given point of ¢ has no component
along e,, and that its value does not depend on . Moreover, we shall assume that all partial
derivatives with respect to 6- or x-vanish identically. Finally, we shall assume that the
deformed surface is static, that o is free of surface and director forces. and its edges c* are
also free of applied forces and moments: thus,

c=F=L=0, ong

N* =M* =0. on c*.

(3.3

We shall select the convected coordinates (x*, x?) to coincide with the coordinates (x. y) in
the reference configuration, and

x! = x. x2=1y onZ (3.4)

The base vectors a, . a,, a, coincide with e,. e.. e,. respectively, and we have

Ay = O,y a* = &,
o (3.5)
1
b11= "§~ b1:=bzx=b22=0~

which guarantees that the deformation is inextensional, and shows that no distinction has
to be made between covariant and contravariant tensors. Moreover, all Christofel symbols
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vanish identically. and all covariant dertvatives reduce to the common dernatine. The

director components 10 the deformed configuration are given by,
JI = 1), d. = (f:i\'?. (/3 = t/;(_\‘). RO

With the use of (23135, (3.60and (2.2, we find that

ny o= oy o= tads. My = Xldy — 1.
\ LR
A = %oty R x-d sy = xs T
1t ; . R R )
AT
d, Cds
Vo, o= % i+ 2, R T
i "R ) 3
oy
My =M, =M .,=u Moy =2y o5
oV
and from {2.4),, it follows that
NoL= 0, (N

while the value of N, is provided by 12.4). in terms of quantities given 1 (371 From
symmetry considerations, we have?

Ny =Ny =0 Ty =T, =0 139
where we have used (2.16}and 13.7).

By taking into account 13.3) and {2.3). we may solve the equations of equilibrivm 2.5,
and obtam

N.o= Ny=R .7, RN

where C s a constant. In view of (3.31 1231 13.7), the equations of equilibrium 2.3y, tor
director forces become

<~-£f~ ; | t‘n[
(3, =~ %, —2-1 _;MZ:(P*!‘F R
o7 T s
. R
Cody 1 -, -
R T BN S S5 BT NS Ty, = 1
AN oA > RALIRY 2y, -
Sy R- Ry '

From the svmmetry of the problem with respect to the phine - = o the general solution
B - t : ? =
of 13 s custly found to be

de= Noshise = Yosh

doo= G-t N o ch aae = FraaNochan

* Egquutons (3 9y can abso e obtaned by sobing Goid conations aned appivine boundars Somdittons howe o
1S onnd easier to aceent (3 drat the caiser
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where
dﬂ — 14R: —
Y R ey +2n)
{3.13)
Tty = L s+ 2, = 2= )7 =250

At
and (1t-)7. (u;)” are the roots of

A} ™

\ , . T
flda+ 2o+ a0 — 23] 2git” — -5 (2R +xs+x 4+ 2=} | = [ =] 1o = 0. (3.14)
R- R
The values of the constants C. A, and A, will be obtained from the boundary conditions.
Along the boundary curve v = u. we have
vo=a,, ¢ =X, tx)=a,. (3.15)
and with the use of (3.3). (3.7) and (3.9). conditions (2.27} can be written as follows

N: = N::a:-%-:‘\':}a}

) ( X
—(A(x)a,) = -—~—a, - = A(x)a;, (3.16)

M2 = M..a,+M,,a, =0
From (3.16) we obtain the conditions
A(x) = A = const. = — RN ,,(a),
Nyay=C =0, (3.17)
M)y = M. a)=0.

The constants A, and A, can be determined with the use ¢f (3.7) and the last two equa-
tions of (3.17).

Mo f(up)shpaa Ay +ps flus) shpsa Ay = 0.

Xs+ Ay + An :
5 ;’_il(l}chuﬂAz'F[/(/‘s)+R

5

Ag+ A+ As

[f‘(llg)‘*“R 113} chuyalA, = —d,, . (3.18)

s

By allowing the presence of directors on the elastic Cosserat surface, we have thus shown
that the boundary conditions on moments and tangential resultant forces can be fully
satisfled along the free edges on a closed circular cylinder. However the normal shear
component of the resultant force along the free edges does not vanish and is given by
(2.4), : this result should be expected. since the circular edge is inextensible, and is able to
support an indeterminate amount of radial force without enduring deformations. The form
of equations (3.12) suggests that the deformation of the directors might be concentrated
on a boundary laver along the free edges: however, this can be verified only after specific
values have been indicated for the coefficients x;,. We will do this in the next Section, where
a more general configuration than the special deformation described above will be dis-
cussed.
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If the present problem were solved by using the classical theory of inextensible plates.
there would be no way of satisfying the boundary condition

M.i+uy=10 13.19

along the edges. The component M, ,. which gives rise to the anticlastic curvature when the
plate is extensible, does now vanish on the boundary and the director separates from the
normal along the edges. The physical meaning of this is evident if one compares the inex-
tensible Cosserat surface to an inextensible sheet being sandwiched between two lavers of
elastic material. If such a rectangular plate is rolled into 4 closed cylinder, the middle sheet
becomes perfectly cylindrical. while the elastic layers are deformed near the edges.

4. BENDING OF A PLATE INTO A HELICAL STRIP

We consider now an inextensible Cosserat plate of infinite length and width 2 which.
in its reference configuration. lies in the plane - = 0 of a rectangular Cartesian svstem
{x.y,z) and 1ts area ¥ 1s dehned by

D U U —d Ly - =0 4.1

The plate is deformed into a heflical strip of radius R and angle of pitch x (Fig. 1) such
that a material line which is initially parallel 1o the x-axis becomes a helicoidal curve of
slope x on a circular cvlinder of radius R. If (. 0. {} denote the coordinates of a pomnt in a
cylindrical polar coordinate system. the deformation of the Cosserat plate is fully charac-
terized by

, ) 1 !
J = SINZ X +COS ALY, = —cosxx——sinxy.
- ) R R !

=
ro= R, d = diy).

where a point with initial coordinates (x, v. ) occupies a position (. 0. ) in the deformed
configuration

We shall assume that the deformed surface is static. and free of surface and director
forces. In addition. the edges v = +« are free of applied forces and moments : thus

c=F=L=0 ona

4
(9%}

NF S ME =0 = s

The convected coordinates are selected such as to comncide with the coordinates (v vy
in the reference configuration. The hase vectors a, are casily determined with the use of

()

/

Fioo 0 N huticul -inp
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(4.2} in terms of the unit vectors e,. e,. e- defined 1n Section 3. and we have,
a, =cosxe,+~sinzxe.. a, = —sinxe,+cosve.. a, =e,. (4.4)

It follows also from (4.4) that

sin % COs «
by = — . hay = ~——, hiys=bhy = ——:

. 4.5
N - R

N

(4.5) shows that the deformation is inextensional. Again. covariant derivatives reduce to
the common dernivative, and the distinction between contravariant and covariant tensors
1s immaterial.

From (4.2),. the director d is wrnitten as follows,

d =d (via, +d.(a,+d;a;. (4.6)

With the help of (4.5). and by assuming from axial symmetry that curve forces do not
depend on the coordinate x. we find that the equilibrium equations (2.3), _, for curve forces

become
CN., cosuz

{cosa Ny;—sina N,;) =0,

¢y
CN., sina .
————(cosa N, ;—sina N,;) =0, 4.7
cy R -
¢N,y cos’x sin x €OS sin®x

N, =0

3 + Ny +Njyy)—-
& R OH R TR

The components N, ; and N, of the curve force vector can be expressed as a function
of the director components with the use of (2.4),. (2.5). (4.5), (4.6) and (2.31) ; the symmetric
partof N, can also be expressed as a function of N, together with the director components
through the use of the same equations since from (2.4), we find.

N+ Ny = 2Ny +mydy—myd + M 7, —M o/ (4.8)

The solution of (4.7} in terms of the director components is then easily obtained in the
following form

N, = —Coiiaf {cosa N (1) —sinx N,4(1)]dr + B,

N,y = —tgaN, +C,
R ¢N,;

-

— +[gd(N12+]\Y21)—[g2d]\722,
cos’y {y

Ny =
where B and C are integration constants. In order to calculate the boundary conditions
for curve forces, we note that on the boundary y = g we have.

v = (0. 1). c =X,
4.10)

ct
t=a,. T FRo=E
cc X
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and it follows from (2.27) and (4.3) that on the boundary + =,
N7 = Notaa, = Votans = Nastaay
_ ‘ EREE
A\ COSTY \io)
= oAy - Nivay.
N | R 3
forall ~» < x = v Thus,
.
My = o~ LN 420
COSTY
and since V. i) does not depend on v we hase.
AL ) . . N
L o= A Nogtar = (L Nty = 0, SRR
s X - T
which, together with (4.9}, shows that
B=C=010 1

In view of the symmetry of the problem with respect 1o the v axis. the boundary conditions
for curve forces will be automatically satistied for v = —a.

With the use of (2.5),12.21), (4.3), (£.3) and {4.6), the equations of equihibrium tor direcior
forces 12.3); , may be written in terms of the director compaenents, and read as foltows

o ( cos 2l sin oS ¥ |
A o ALy Xy o d =y R
Cvn ; R- R-
S X C0s ¥ (d,
-*1}\..,1-4,1*} e e e So=
R Qv
sin xeosx iy sin=x
Iy """R": L ;'4'(15-7-1“*1—)";;_: - V/,:*/(« -R'_ﬁ"(f:
1 - . va -
R F o b FE SR R ) ) b B S A 1Y)
R S
stnxcosy do L L
‘ - - e Y B — e O TEY e -
{x, - P R SR KRl B PR TN T -
T { ! § ,
T B S et I JNR S0 i 1Y S
S R- i

The general solution of the system (415 can be custiy ontained noterms of exponeniiads,
However. hefore proceeding further, we wish 1o wrie the coctBioents » of the free eners
polynemial in nondnimensional form.

In two recent publicatons 120137 Green and Naghdr have shown the correspondoenee
Fetween the hneur theory of un elastic Cosserar suriee and problems concerned with eiastic
plates and shells. In particular. spectai vatues v e heen proposed for scone of the coetticionss
x, o which will be used tater in this Section. Afthough we are considering Large displacomane

1>

of an elastic surfuce the mformation obtamed i 127 and (13 onthe -

SRARISRE S A

SRS Y,

IS IR SHICEN A T

valid tor our present purpose. because 4an 12 3 keeps (e same forn
Jdeformations.
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Thus. let the Cosserat plate describe (approximatelyv) the behavior of an elastic plate of
thickness /. with Young's modulus E and Potsson’s ratio v. and we assume that the middle

plane of the plate is inextensible.t Nondimensional coefficients i, are introduced as follows
o, = Ehfi;. x, = Ehfi,. 1. = ENPfs.
. (4.16)
x. = EIf,. x- = El'f-. 2 = Eh ' fly.

After replacing the coefficients x, in (4.13) through their value given in (4.16). we find
that the general solution of the system 1s given by

.y Dii) oy Dyjiny
[, =Ashis+—-——=A,sh/,>+-—-~A;sh/,>.
B e A N T I e R ) WP "/z
D ﬂ(/ ) D;ﬂ(/‘.}} ¥ -
i.=21270A shy +A, h/,o+ 22" A shs,n. 417
di=p gt S A /; Dyl 200 7, .
Dysly) v Dyt oy
d}:d?——:“j)A,ch/.]]—] ij(hAﬂLh/, —AJCh/.JE.
where the £;’s are the solution of
D(s}y =
Ber?— (B3 +e” g cos?a)
'£%fg sin 2 cos x (Bs+ Bo+P122 —(Ba+6fg sin’x)
&+ B+ Belisinacosa —e[Bs+(Bo+ B+ By)sinali —Poil + [Ba+eXBs+Po+ B

= 0. (4.18)

The parameter ¢ in (4.18) stands for the ratio 'R of the thickness to the radius of curvature
of the deformed surface, and Dj;(~) is the cofactor of the element (ij) in the symmetric
determinant D(%). The constants A; have to be determined through the boundary conditions,
and d9. together with d§ = d% = 0, is the particular solution of the system (4.15),

Bs
Bs+e*PBs+Bo+B-)

The moment boundary conditions along the edges y = +a are determined by (2.27),.
and we have

d§ = (4.19)

M, (xa)= 0. M..(+a)=0, Myy(+a)=0. (4.20)

The constants A, . A,, A, can then be evaluated by expressing M., . M,,. M, as afunction

An examination of (4.18) reveals that. for a fixed angle of pitch x. the roots ~; are approxi-

mated by
o = (/_31) ; T (ﬁi) (4.21)
Be

Bs
+ For example. we might think of a double grid of inextensible cords (with fixed angles). between two layers of
elastic material.

[BXd

B,
_(ﬁ5+[fn+ﬁ"
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and the magnitude of the error is of the order ¢*. The cofactors 2,140 Dyl Dyt

which appear in (4.17) are all factors of ¢~ : an analysis of the boundary conditions (4.20)

shows that when the ratio h/a is also much smaller than 1. one has. near the edges
Be+p-1 .

—fai0 _ . ’h . :
dy = £=2—"+ —sin 2y e “1HaT IR e
lﬁ}/}h)s :
o= P T B BISINE a2y 422)

S T R AT
dy—dy = 0.

By pursuing the analogy between u Cosserat plate and its elastic plate counterpart.
Green and Naghdi [13] have identified as follows the coetficients 5, in (4.16).

3 g = (1 =)
21 vy P =)

Il

B3
4.23)

v 1
ﬁi - dw%‘"vv’v’ /in = /))" =

|

240+
where the value of /i is based on a comparison with the problem of torsion of a rectangular
strip.

Equations (4.21)-(4.23) show that the director components ¢, and d, differ from zero
on a layer concentrated along the edges. with a width of the order /. The boundary layer
corresponding to d; has the same origin as the phenomenon discussed by Fung and Witurick
[8]. where however the layer has a width of order |, (hR): the difference arises because of the
true inextensibility of the middle surface in the present probiem.

Finally, the component (d; — 1} differs from zero in a layer along the edge. the width of
which depends on the value of §¢. If /i, tends to zero. (4.21), shows that the width of the
boundary layer increases, but the analysis reveals that A, decreases simultaneousiy: the
physical meaning of A, corresponds to a normal strain effect along the edges.

In view of the above comments. and the relations (2.4),,(2.31)and (4.17), it appears that
the nonvanishing components of the curve force vector are concentrated in the boundary
lavers. This last remark provides further significance to the subject of inextensibie surfaces.
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AGCTpakT—BbIBOAMTCA CHCTEMA  3aBHCHMOCTEN NOAS M KOHCTHTYTHBHbLIX  3dBHCHMOCTEH. BMECTE C
TPAaHMYHBIMH YCJOBUAMH, 1718 KOHEMHbIX AedOpMauMii HEPACTRXMMbIX NuBepxHocTed Koccepa. Dras
TEOPUS NPUMEHSETCA K H3ITHOY NPAMOYTOILHON NAACTUHKM, NPeodPA30BbIBAEMON B 3AMKHY Tl KPYT b
LMIUHADP KOHEYHON AAMHBI ¥ K 1ePOPMALIMK 2 THHHOR MPAMOYTOIBHOM NAACTHHKE ., npeobpa3oBbiBaeMoil B
CMUPATBHVIO NOI0CY—(HOAO00OHYO ¢T0.10Y, OKPALIEHHOrO KpachbiM M OelblM ULBErOM RO ¢AMpann.
Ciayxaulemy BblBecKOH napukmaxepa B C I A).



