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Abstract The ,et llf field and wnstltutl\C relation" together with the boundary conditions, are derived for
finite def0rl11,ltlons of Inextenslblc Co,serat surfac,,-, The theory IS applied to the flexurc of a rectangular plate
inw a c10scd CIrcular cy hndcr of finite length, and the deformation of a long rectangular plate into a helical
,trrp (barbcr', pole)

I. I:\,TRODUCTION

THE theory of plates and shells, the middle surface of which can be considered as inextensi­
ble, has been the object of several investigations over the last two decades; principal among
these are the works by Ashwell [1-3]. Mansfield [4]. Reissner [5-6J and Johnson and
Reissner [7]. The physical significance of the inextensible hypothesis is based on the observa­
tion that when the ratio between deflection and thickness of a cantilevered extensible plate
increases, its behavior is almost inextensional. and the discrepancies between extensional
and inextensional solutions occur in a narrow region concentrated on the edges,

The mechanism by which a boundary layer is created along the edges of an extensible
plate in the state of large deformations has been analyzed in detail by Fung and Wittrick [8],
Essentially, if a rectangular strip of width h and thickness h is deformed into a cylindrical
strip with longitudinal radius of curvature R. the strip wbich at first assumes an anticlastic
shape, approaches a cylindrical form when the parameter b2 /Rh becomes larger. Distur­
bances from the cylindrical configuration occur in a narrow boundary layer with a width of
the order ,,/(Rh).

When the edge of the plate is also subject to shear force and twisting moment, another
type of boundary layer occurs \vhich was originally described by Kelvin and Tait [9J, in
explaining the physical meaning of Kirchhotr's boundary conditions along a free edge: the
width of the corresponding boundary layer is of the order h.

If it is assumed at the outset that the middle surface of the plate is inextensible and that a
deformed normal element remains normal to the middle surface, the concept of boundary
layer disappears. Instead, it is necessary to introduce three Lagrange multipliers along the
edges which allow to satisfy the boundary conditions. This has been done by Reissner [5J
for the case of shallow elastic shells. and similar boundary conditions have been found by
Ashwell [3J by considering the limit of the extensional problem when the width of the bound­
ary layer vanishes.

One of the Lagrange multipliers introduced in [5J originates from the fact that the edge
of an inextensible surface is also inextensible. and an indeterminacy of the boundary
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conditions has to be expected therefrom. Also. the absence of normal shear in and ;3
causes the presence of the remaining two indeterminate functions on the edges.

In this paper, we wish to examine the mechanism of large deformations for inextensible
Cosserat surfaces, and we follow the general theory of Green ct al. [IOJ. for elastic surfaces
to every point of which a deformable director is attached. Finite deformation solutions
dealing essentially with axially and spherically symmetric homogeneous deformation~

have been obtained recently by Crochet and Naghdi Ilj.
By inextensible surface we mean that the length of a line element in the surface rcmain~

invariant throughout the deformation. Ho\',;ever, no constraint is imposed on the director
This allows us to satisfy boundary conditions by introducing only one Lagrange mUltiplier
along the edges, since the director field on the surface can be selected such as to satisfy the
moment boundary c(':1ditions. This is done in Section 2. where we give also an explicit
form of the constitul,ve relations.

By applying the t:leory to some specific examples, we find that the effects discussed by
Kelvin and Tait [9J and Fung and Wittrick [8J occur in boundary layers along the free
edges: normal strain. which is included in the vertical component of the director. lS also
confined to a region of small width along the boundary.

In Section 3 we consider the problem of a rectangular plate which is rolled into a closed
circular cylindrical tube of finite length. In Section 4, we analyze the deformation of a long
rectangular strip into a helical strip of constant radius (barber's pole)-an exact solution
is obtained which satisfies the boundary conditions along the free edges.

2. AN INEXTENSIBLE ELASTIC COSSERAT SLRFACE

Consider a Cosserat surface (J, embedded in a three-dimensional Euclidean space.
defined by

r = r!x', [): d = dlx'. rl. 1211

where r is the position vector rel::itive to a tlxed origin. d is the director associakd with
every point of G. x"(:t l. 2) arc convected coordinates iocatmg material point:' on the
surface and 1 is the time. In the reference conhguration (say. at time 1 = Uj, the position
vector is given by R(x"), while the director 0 has unit length and lies .liong the normal to
the undeformed surface ~. Als<-l. let v = rand w = d be the point and director velocities.
respectively.

The base vectors along the x"-curves on 1.1 are denoted by a,. and a, stands for the unit
normal to the surface: their duals on I are denoted by A, and ..\, ..\150. £I,l! and 11",

:md B,li ) denote the covariant expression llf the tirst and ~econd fundamental fllrms.
respectively.

Let (' be a closed curve lying in (T. and let v =: I',a' be tht~ \)Ut\vard unit norm:.li e,l (
The curve and director force vectors per unit length of (' are denoted by " and \1. rcspeL··
tively, while F and L are the surt~lce and dIrector forces per unit area of '7. In comp\)[ler1l
form. we have

\1
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It was shown in [IOJ that the field equations have the following form on cr.

N~PI~-b~N~3+pFP = pcp.

N~317 + h7p I'rP+ pF3 = pc3.

Ar1t - h~M73 +pP = mP•

.M~317+b7pA1~II+p[3 = m3.

(2.3 )

together with

(2.4)
cp,[N'P+mPd'+M)'Pi.")'J = 0

N'3+(m3d~-m'd3)+M)'3i.\-M)"i.\ = O.

In (2.3), [ is the difference between the director force L and the inertia effects due to the
motion of the director. c is the acceleration vector and m is a vector to be specified by a
constitutive relation: in (2.4), the tensor i' j7 has components given by

(2.5)

The conservation of mass on the surface is expressed by

paf = POA1, (2.6)

where p, (Po), is the mass density per unit area of cr, (L) and a, (A), is the determinant of the
matrix a,p. (A~{! I. Finally, the equation of balance of energy reduces to

pr-q~I~-pT$= 0, (2.7)

where q is the heat flux vector, r is the heat supply function per unit time and per unit mass
of cr, T is the temperature, and S is the specific entropy per unit mass of the surface.

Constitutive relations for the case of an elastic Cosserat surface have been obtained in
[10J, with the assumption that the function of free energy A per unit mass of cr has the
following form,

A = A(T, e,{!, i'i,' dj , 1\" DJ,

where 1\, is the value of ;'i, in the reference configuration, and

(2.8)

(2.9)

(2.11 )

(2.10)

i cA
m = P-;;;-d 'o i

2e,{! = a,{! - Aap .

Similar constitutive relations were postulated for N'~P, Mi~ and mi
, where

N"P = N'P, = N'{! - m'd{! - M'I'i. p;..

With the use of Clausius-Duhem inequality, it was found in [10J that

cA
S = - cT'

and

(2.12)
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We shall now consider an illt'xtL'llsihle clastic Cossaat surl~lCe, which IS CUllstr~lll1\:J ,(
that the length of any element in the surface remains unaltered throughout the l11,Hi,;I1"

It follows immediately that for such surfaces,

'- ""
~lI1d from 12.61 :lnd 12,13) we ha ve,

The specilic fr~e energy per unit area \)1' the ,;urface is gi\en h~

, , '
j-+j

Through a procedure similar to that used in (10). it is easy to show that the constllu!lvc
relations (:U 1) remain unchanged for the case of an inextensible surface. However. V·"I
formerly given by 12.12) remains undetermined, and from {2101 we obtain

where piJ in an arbitrar~ symmetric tensor which should be determined through t!l(
equations of motion.

In order to ~1bwin the form of thl' boundary L'onditions. let us consider ,111 ine\tclhjl,k
Cosserat surface (T which is ackd upon by a surfaL'e force tleld Fix), and a dirl'clor force lield
l(xl: the boundary curve c* of (J supports a piecewise continuous cune force vector '\*((1
and a continuous director force \I*lcl. both per unit length l)f c*. and the heat tlll\lkHlg
the boundary has the value /1*(('). The equation of balance of energ~ postulated II: )(i

must be satisfied for the surface (J surrounded by c*. and we have

d • •
dr I Upv.v~p(A+TS(d(i- j ~pr+pF.v~/)[·wJdiT

.. 11 .,.•1

= I ~'*.v+'I*.w-h*]dc
"','.

'\ P'I'. y".

where 11 point loads act at distmct corner points x,:I J.long the boundar~ c', We shall ~li,(l

consider that all necessary c\1nditions of continuity and differentiability ~lre satistkcl
throughout r;

With the use ,)f the held eljuations 12.3 L (2,4 \. I:.h and the constitutive relati~)ns i:. i j \

1:.15\ and 12161. it is possihk t~) transform the left-hand ';lde of (2.1 7 ) as folh)\\s.~

;- \\ 1...' ma~l.' .1 Jl"dllll:tll!!1 hl.'l\\t:'::n til,: nil[!\'n, .,1' ~:~(,,\l\..'!1"'I,",k (, ·,' ..... ,,'-'rat "ur(~kl· ,u:d ":l1l·\t'::1<lt~n~l) (h:i"!
", -In \ If J ( ,h.,l'Lll -ill 1'1.1'_':" ,. I Ii\.,' tal h.'r i'l.'r"l,.·r ..... 1,\' ,I 'PC(i,t If\, j'\: ,'Ii dl.'(, )lTfLl! hIll \); ,j --'t. :L.••. ,!; ,llr' ',Ii \\ ~11k : 1;

Inl..lJl...;l!l.:"'\ J "rCCl~li rr()rl.·~·r.\ ,'I tilL' .. ilnal''''' ;\'(':;
~. In d.:nvln.g !:.!~l. \\(.' iLl\\'" ~L'1f \\:-ittl.'n l'\Plll'1Ir..'i:. ~!h,: rcLlkJ ~H1('n; d,C~ll ,i:~';-"" r:1C ,ii,:,'j\

.(, (,)!ll1\\jp.:; In in\l'r",;.? \)f ...kr :h;.,' ;!rS-~ln1l·tH III III (\lr ,'bL!ln!~1''': lh.' t':c:d .~: .~~ .... '_-'.;U,-ltl,,!;

1'1 cILT~:,



\\hc:re we ha\c introduced the notation,

TJ = T,f. aIi' \1' = :\f7la,. (2.\91

Thus, by 12.\7) and (2.\8), we obtain the identity,

rT'I,.\daT ( :[(N'-rh
J
-:"'*].\+I\Fl,-!\l*I.W-((J'l,-iI*l: de

,,'(1 Jc*

_ '\ pti •. ,.til = O.
i= 1

12.201

Consider at time r a given deformation of the Cosserat surface, and let the state of stress
be specified by the vectors T', N'. \1' on a. and N*. \1* on the boundary e*' Let L w be the
associated point and director velocity fields at time r. From the form of the constitutive
relations (2.1\)and (2.16), we observe that another velocity field, v, \\. say, may be associated
to the stress field specified above. with the same state of deformation. We may conclude
that (2.20) must be satisfied for all point and director velocity fields which are compatible
with the constraints.

Let ,,' = ,,'(e) be the parametric equations of the boundary c* : the length of a line
element along e* remains constant in time. and we have.

COx' tx li
·7 d'" d,·li -/ . . d·2(,p ., ., - ('Ii -,- -,- (

cc Ie

(2.21 )

",'here r' are the components of the tangent vector t* to e*. From (2.2\) we conclude that
along e*.

(2.22)

Also. (2.13)2 must be satisfied throughout a.
Let S,p(x) be an arbitrary symmetric tensor field which is continuous and differentiable

over a, and let A(e) be an arbitrary scalar which is piecewise continuous and differentiable
over the boundary e*. with possible discontinuities at points XU). i = 1..... II. By considering
S'fJ(x) and A(e) as Lagrange multipliers. and taking into account the constraints (2.13)2
and (2.22). we shall add to the identity (2.20) the following expression.

~ {L Sfi'u,pda + f.. A(e)u,pr'r fJ de}

= rS/'. '·.fJ da + r A(e)t(c). ~;. de
61 (j .... c. ( (

= r -SfJlp.\da+J {SPl'p-~~JA(C)t(e)J}
.. (J c· ( (

where

. ,. de + L [;\(c)t(e)J~~ . ,.\il

i= I

(2.23)

(2.241
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By adding 12.231 to 12.201 we obtain

J. {[n,,'+s'-rll',-N*-/:>.'\ic}tU'Il].V+l\Vl',-\I*).W+(!'].,-il*1 de

-rIT'!" S,JU· v drr + I: :(.'\(clt(clJ: - pili I, Viii = n
.. 11 i = 1

Equation 12.251 must be identically satisfied for arbitrary IClmtinuous) point dnd
director velocity fields v(x) and w(x) respectively, over rr and c*. From the surface integral
in (2.25l, it follows that rand S' differ only through a vector l" such that

12.26)

However, l" may be set to vanish identically without loss of generality, since it is contamed
in the general solution of the homogeneous part ofC.3)}. In view of the continuity require­
ments on the variables appearing in the line integral on the left-hand side of C.25\. we

conclude that on smooth elements of the boundary c* we havet

,.
."i'I', = "1* + -:;-(l\(eltlc)),

/'e
,"'\ ")~\
,_._. i

'I'\', = \1*.
and at the corners we find

12.2«1

Then it follows easily from (2.25), (2.271 and (1.21\) that

12.291

We now return to the constitutive relation (2.15) for the specific free energy ,II' the
surface, and consida a Cosserat plate which is isotropic in the reference conl1g11ralion.
For a plate, .\" vanishes identic:llly, and A may be expressed in terms of fifteen imari:.mts
(obtained from those given in [IOJ by setting e'l! = 0). However, in the rest of this papt:r, we
shall assume that for isothermal processes :It temperature ~) the free energy .-1 c~n he
written as a quadratic function of the vari:lbles i,l, I), il, and ;.,,·t If the Cosserat picHe
imitates the symmetry of a three-dimensional plate which is transversely isotropic with
respect to normals to the plate, the free energy has the form

and constitutive relatlons I~. i 1/2 ,;lssume the simple f,)rm

1/1, = x,d,. rl', = x~(d;-ll.

t L~t us recall that the boundarv conditions r"f .ln extenSible C,)';sent Sur;,lC" :lr,~ gl\cn h\ " V'
\f!l'

z
= \1* (:-(1 ~.*

,- ~() line:.H tt~fms rviH 1'"\(' m'..:!uJed ,;inc~ \\'c .::nn";Jder J ;:'!d~~ '1 hH.:h ~,tr~e l)f ,trc~-; in the rcfc~·~th;c \..'(·nI1tUr·;l\ 1<.-'1\
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In a previous paper on special solutions for Cosserat surfaces. Crochet and Naghdi [11]
have used a general form for the function of free energy. and have shO\vn that some special
solutions can be obtained withaut specialized assumptions. However. in view of the purpose
of the present paper. we shall assume for simplicity that the constitutive relations are given
by 12.31). It may happen that the form (2.30) for the free energy A is exact for a particular
type of Cosserat plate. Alternatively. if A given by 12.15) has a polynomial expansion. the
form (2.30) may be regarded as an approximation for motions in which the magnitudes of
the vector (d - 1) and tensor: i'i2} lin a suitable non-dimensional form) are small compared
to I.

3. BE:\DING OF A RECTANGULAR PLATE INTO A CLOSED
CIRCULAR CYLINDER

Let (x. y. .:) stand for the coordinates of a point in a rectangular Cartesian system. and
consider an inextensible rectangular Cosserat plate which. in its reference configuration.
lies in the plane.: = 0; its area L is defined by

L : 0 ::; x ::; L. - a ::; y ::; a. .: = O. (3.1 )

Let (r. e. ~) denote the coordinates of a point in a cylindrical polar coordinates system
[the origin of which does not necessarily coincide with that of the (x, y• .:) system], and let
er • eo, e~ be unit vectors tangent to coordinate lines at a generic point in space. The surface
a is deformed into a closed circular cylinder of radius R = L/2n, and axial length 2a, such
that the position of a point (x, y) of L is given in the deformed configuration by,

L
r=­") ,_n

2n:e=-xL' , ~ = y. (3.2)

The description of the deformed Cosserat surface is achieved by requiring, from axial
symmetry considerations. that the deformed director at a given point of a has no component
along eo, and that its value does not depend on e. Moreover, we shall assume that all partial
derivatives with respect to 0- or x-vanish identically. Finally, we shall assume that the
deformed surface is static. that a is free of surface and director forces. and its edges c* are
also free of applied forces and moments; thus,

c = F = [ = 0, on a

N* = M* = O. on c*.
(3.3)

We shall select the convected coordinates (Xl, x 2
) to coincide with the coordinates (x. y) in

the reference configuration, and

(3.4)

The base vectors a 1 • a 2 , a 3 coincide with eo- e~. er • respectively, and we have

(3.5)

which guarantees that the deformation is inextensional, and shows that no distinction has
to be made between covariant and contravariant tensors. Moreover, all Christofel symbols
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vanish identically. and all covariant derivatives rt.'duce to the commUll dCn\~ltl\.; Th;
director components in the deformed conliguration art.' givcn by.

<I, = <1,11'1.

With the lise 01'12.5).13.51.1361 ~.ll1d 12..'11. \\~ lind that

J! "

and from (2.4)2' it follows that

\1 11 = o. \ [ 2.\

\' .. = n.

while the value of tV 2J is provided bv 12.4 I: in tt.'rms of quantities gm?n in 13 '1 L fr\)m
symmetry considerations. we have+

S I 2 = :V: I = O.

\vhere we have used (2.16) and t3.7).
By taking into account t3.:Q and 1.'.5). \\e may solve the eLJuatlOns of equilibrium I' ~ I.

and ohtain

.\,.=c i 3.1 (II

\\here C !s a constant. In vicw \If 13.311.<.51. /.<.71. thc cquations \)1' equilibrium 12.'1 !llr

dIrector forces becume

,':'.1,
{::,~Xh-,-l-l. _­

, \

I
1...:.. 1')

1\

II.

~ I

\' 11;

Frnm the ,ymmetry of the prohli?Tl1 1\ It h rc,rc([ W thc pi"l1c .~

!)t·I~.111 is casily fl1l1nd te) hc

+- FI..!uatit)ns L~ l») I:,.'an ~il:'d be ,)hUlI1cd h: "t'i; in~ :k-id ~c I,;.j[ k'lH ~ <HLI ,irpi: ln~ l"'t)t~ndJ.: ...:,-,ndiUI);'"
Ii j" fl.)t;lh.1 c:"l:,lt:f (('\ ;ICC"-'rn ~',; ')1:!l :11":.,' ,'Lr'I.-·j
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(:1.1:1)

(J.14l

The values of the constants C ~ 2 and ~.1 will be obtained from the boundary conditions.
Along the boundary cun'e .I' = u. we haw

l = s. (:I.ISI

and with the use of (3.3). (3.7) and (3.9). conditions (2.27) can be written as follows

From (3.16) we obtain the conditions

A(x) = A = const. = - RN 23(a).

Nda) = C = O.

,\1 22(ul = :\! 2.1(a) = O.

(3.16)

(3.17)

The constants i".2 and!l] can be determined with the use of(3.7) and the last two equa­
tions of (3.17).

By allowing the presence of directors on the elastic Cosserat surface. we have thus shown
that the boundary conditions on moments and tangential resultant forces can be fully
satisfied along the free edges on a closed circular cylinder. However the normal shear
component of the resultant force along the free edges does not vanish and is given by
(2A)2: this result should be expected. since the circular edge is inextensible. and is able to
support an indeterminate amount of radial force without enduring deformations. The form
of equations (3.12) suggests that the deformation of the directors might be concentrated
on a boundary layer along the free edges: however. this can be verified only after specific
values have been indicated for the coefficients ':I. j • We will do this in the next Section. where
a more general configuration than the special deformation descrihed above will be dis­
cussed.



392 MARCEL J> CROCHET

If the present problem were solved by using the classical theory l1f inextensible plates_
there would be no way of satisfying the boundary condition

along the edges. The component M:22' which gives rise to the antic!astic curvature \vhen the
plate is extensible. does r!ow vanish on the boundary and the director separates from the
normal along the edges> The physical meaning of this is evident if one compares the inex­
tensible Cosserat surface to an inextensiblc sheet being sandwiched between two layers ur
elastic materiaL If such a rectangular plate is rolled into a dosed cylinder, the middle sheet
becomes perfectly cylindricaL while the clastic layers are deformed near the edges>

4, BE~DING OF A PLATE INTO A HELICAL STRIP

We consider now an inextensible Cosserat plate of infinite length and width 2u which.
in its reference configuration. lies in the plane:: = 0 of a rectangular Cartesian svstem
Lc y• .:1. and its area I is detined by

iI S; Y ::;; - iI. j-t II

The plate is deformed into a helical strip of radius R and angle of pitch "X (Fig> I) sUi.:h
that a material line which is initially parallel to the x-aXIS becomes a helicoidal curve of
slope "X on a circular cylinder of radius R. rr (I'. O. s) denote the coordinates of a point in ~i

cylindrical polar coordinate system. the deformation of the Cosserat plate is fully charm>
terized by

" = Sin C1. X + cos "X y.

I' = R.

1
{) = - cos C1. x

R

)
- 510 x LR >

where a point with initial coordinates Ix. y. 0) occupies a position P-. iI.; I in the deformed
configuration

We shall assume that the deformed surl~lce is static. and free of surface <.Inc! dIrector
forces> In addition. the edges r = ± 11 are free of applied forces and moments. thus

c = F = [ = I) on G.

'i* = \1* = U.

The convected coordinates are selected such as to COincide with the coordinates \\. \i

in the reference configuration> The hase vectors a i are easil: determined with the use of
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(4.2) in terms L)f the unit vectors er • eH• e. defined in Section 3. and we have.

393

(4.4)

It follows also from (4.4) that

a2fJ = a.a = .4 2 # = 4 ()
.e . 2fJ = ~fJ'

R
h - -~~22 - R'

SIl1 J( cos':/.

R
(4.51

(4.5) shows that the deformation is inextensional. Again. covariant derivatives reduce to
the common derivative. and the distinction between contravariant and covariant tensors
is immaterial.

From (4.214 , the director d is written as follows.

(4.6)

With the help of (4.5). and by assuming from axial symmetry that curve forces do not
depend on the coordinate x. we find that the equilibrium equations (2.3)1_2 for curve forces
become

eN 21 cos:x . .
~.-+-R (cosrx N 13 -S1l1 ':/.N 23 ) = 0,

cy

eN" sin:x .
~---(COS~Xi\'1,-S1l1::xN'3) = O.

cy R . -
(4.7)

eN'3 cos2): sin:xcos::x sin 2
':/.

f.l~ -~Nll + R (NI2+N21)-'TN22 = o.

The components N 13 and N 23 of the curve force vector can be expressed as a function
of the director components with the use of (2.4b. (2.5). (4.5), (4.6) and (2.31); the symmetric
part of N 2fJ can also be expressed as a function of N 21 together with the director components
through the use of the same equations since from (2.4) 1 we find.

(4.8)

The solution of (4.7) in terms of the director components is then easily obtained in the
following form

N 22 = - tg:x N 2 I + C.

R eN 23 , N 1\1 2 1\1
NIl = --,- --~-,. tg:x ( 12 + H 21) - tg rx n 22.

cos-':/. cy

where Band C are integration constants. In order to calculate the boundary conditions
for curve forces, we note that on the boundary y = a we have,

et cal cos 2
(X

-:::- = -~- = ---a3 •
ec ex R

\' = (0.1). C = x,
(4.10)
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and it follows fmm 12.~71 and 1-t.3Ithat on the b'H!l1dar:.

,,2 = .\' 2 1(,Ila I .~ \. 2 21 (/ la 2 .,.. .\' 2 ,I ,ila,

" .\(\) ,:os -::t.
a I - R '\ I\' )a , .

1'\

j Thus.

\ 2! it/I = n.

R
\(\ 1 = _. ,V -' J t01.

cos"'j,

and sinc~ V 2,d'!) does not depend on \. we ha I e.

,-\/ \1
," = O.
,x

Ivhich. together with 1-+.9), shows that

B = C = 0,

I-U~I

[-U-tl

In lIe I'. of the symmetry ,)f the problem wi th respect I(1 the \ a\is. tht.' b(1undar~ cond i111111\

for curle forces will be automatically sali~lkd 1'1)1' 1'./

\Vit h the use Ill' I~.5 1,12,31 ), (..U t, (..U) and ("+61, the eq uatil'lh Ill' eq uiIJ lmu m t\)r Jlrel'~\ 1,'

forces 12.31, -l nH) be written in terms \)f the director cumponent';. and read ~lS f\li!\W,

R

Sill y. C,1S 'f ,',!.
! 1.[, -- X - •. 1 .... /

(I.

.,
)·1 i,i.

i

The general SOIUl\\ln "f the "y",tem 1-1- I ~I ,::1l1 he ~~I~I:Y.ln[Jllkd 10 :.:rm, 01' "
H,)\\e\.:r. bd\)re pr()L'ceJ:ng further. I\~ 1\ I"h tI' 'I\TItC the (IX:!], 'cnh J, "f Ihe :ree"l~~T;:,

rol~ nl'!lllai III l1Pndli1len"ion~tl f,'rm
In tW\) recent publlcatlons :L':. 13 ,Gr(:el1 ,mLl '.aghdl halc:,i"'\\i1 the L',)fr~sr(l!1(j(:lk'c'

h.'t\\cen the Illlear the,ll'\ 'lf~ln el~lsth': ("',ser~lr ,!!l":ll'e ,md pr"blenb ,"lnc.:rneo \\ Ilh e'i,:<;c'
pia I~S and shd k 111 pa rt icula r. speL'la i \- a Illes kl '. ~' hee 11 pI" I fl' h,'d (, II' '" ":le (1 f the C(1<':ijj~':,':1l ,

:!. whIch wd! be Lbed lalt.'r In till' See'[inlL\ltl1<lll~h\\C 'ire C,'IJ'illknil" Ltr2c' JISpicl~\:mc':'"
,1f:1l1 elastic ,udae·: the 1l11','rmalinn nht~l1ncd In ! ,- .1I1U i,~ ,111 the' ,c:ri;,_"':n;, 'J, ;":',lL:Hb

\:did f,lr our prescnt purp\lse. because 1 III I'::.~,ll h."cT's :;1,' <,lIne' ','!':;: !.·r tl:11111; ",:::
,.h:ft)nna t Inn~.



Thus. let the Cosserat plate describe (approximately) the behavior of an elastic plate of
thickness h. with Young's modulus E and Poisson's ratio r. and we assume that the middle
plane of the plate is inextensible.t Nondimensional coefficients /f, are introduced as follows

::I.., = Eh/f 3 .

::I." = EII"/f".

1. 4 = EIJ/I:;. 1. 0 = Eh 3 /1o..

')- = Ell"/f-. ')~ = El1"/f~.
14.1 ())

After replacing the coefficients '), in (4.151 through their \aiue given in (4.161. we find
that the general solution of the system is givcn b:-

. .r . Dcdi·c) . .r D 31 ii..,1 . .I'
ill = ~1 sh/·1·--t---:-~csh/·c-+-"-'-~3sh/·3-·

h Dcc(/.c ) h D.13(/..d h

(4.17)

(4.19)

where the i'j's are the solution of

D(i.) ==

{Joi. c - ({J3+ "c{Jg cosc:x)

I [.c {f g sin ex: cos :x ({J, + {J" + {J 7 )i. c - ({J., +" c/f g sin c:x)

r.({J6+{J,+{Ja)i·siniXcosCf. -C[{J,+({Jt;+#7 +(3g) sinc:x]i. _(Jg/.2+[{J4+C2(#S+{Jo+#")]!

= 0. (4.18)

The parameter c in (4.18) stands for the ratio h R of the thickness to the radius of curvature
of the deformed surface, and Djj (/.) is the cofactor of the element (U) in the symmetric
determinant D(/.). The constants ~i have to be determined through the boundary conditions.
and d~, together with d? = d~ = 0, is the particular solution of the system (4.15),

d~ == , {J4 .
{J4 + c-({J, + {J" + {q

The moment boundary conditions along the edges .r == ±a are determined by (2.27h,
and we have

(4.20)

The constants ~1' ~2' ~3 can then be evaluated by expressing AI c1 ..\f2c' AI 23 as a function

An examination of(4.18) reveals that. for a fixed angle of pitch Y, the roots /.; are approxi­
mated by

(4.21 )

+ For example. we might think of a double grid or inextensible cords Iwith fixed angles I. between two layers of
elastic material.



14.22l

and the magnitude of the error is of the order ,;". The cobctors J) 121 ;., L D":I ;., i, D'll/.. I

which appear in (4.17) are all factors of 1;2: an analysis of the boundary conditions 14.201
shows that when the ratio h/a is also much smaller than I. one has, near the edges

fJh+fJ" I. ~[;Ol -'IJ'h 'd
l

= 1:---. ~. SIn 2:£ e"'" I}! . -i-O(cl,
IfJ }fJ,y .2

115+(#,,+/),)sin":x -[ "I -1'1,1/ 'd, = -c:·~--~-'--~ e '.," ,\ ·'~Olr-1.

f3!l11, +- fl" -+-fl,

d
l

- d(i = 0(1;").

By pursuing the analogy between a Cosserat plate and its elastic plate countcrpart,
Green and Naghdi [l3] have identified as follows the coefficients Ili in (..U61.

11-\')
If.. = .. ,

(I +1')(1-21')
14.23)

I
/1" = Ilc = -~---.

24(1 + I)

where the value of (l} is based on a comparison with the problem of torsIOn of a rectangular
strip.

Equations (4.21)--(4.23) show that the director components .II and d" differ from zero
on a layer concentrated along the edges, with a width of the order h. The boundary layer
corresponding to d2 has the same origin as the phenomenon discussed by Fung and Witlrick
[8], where however the layer has a width of order 'v (hR): the difference arises because of the
true inextensibility of the middle surface in the present problem.

Finally, the component (Ll} -I) differs from zero In a layer along the edge. the Width of
which depends on the value of /1 8 , If ll~ tends to zero, (4.21)} shows that the width of the
boundary layer increases, but the analysis reveals that ~} decreases simultaneousiy: the
physical meaning of ~} corresponds to a normal strain effect along the edges.

In view of the above comments. and the relations (2.4)2- (2,311 and 14.17). it appears that
the nonvanishing components of the cunc forcc vector are concentrated in the boundary
layers. This last remark provides further significance to the subject of inextensibie surfaces
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A6cTpaKT-BbIBOllHTCSI CHCTeMa JaBIICH \.IOCTeii nonSi H KOHCT HT) Til BHblX 1aBllell MOClel-l, BMen e C
rpaHH'iHbIMIl yC,10BHSI\1l1, ':LlSI KOHe~HbIX lle¢Jop\laUHii HepaCTSI)IOIMbIX nOBepxHoCTeH Koccepa. 3 rail
TeopHll npHMeHSIeTCll K 1l1rlioy npllMoyro.lbHoH n.laCTliHKIi. npeoopa1oBblBae!\lOH B 'laMKHYTblH Kp)TnblH
UIlJlHHllP KOHe~Hoi1 llclHHbl Ii K lle¢Jop!\laUHll .l.11lHHllii npll\lOyro.lbHoH nnaCTlIHKe, npe06pa10BblBae!\IOH B
cnHpa;lbHyl{) nO.locY-(HOllOOHYI{) C10.10y. OKpaweHHoro KpaCllbl\1 H 6e.lblM UBerOM no cmlpa.lI1.
ClTYjKaWeMY BblBeCKOH napllKMaxepa Be ill A).


